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Abstract Frictional instabilities arise in a number of engineering and scientific contexts, when the presence of
friction renders unstable the uniform motion between parts under nominally uniform conditions. Various classes
of friction instabilities exist, those involving friction weakening with speed, and those at constant coefficient of
friction. In the latter class, in turn, there are Dynamic Instabilities (DI) and Thermo-Elastic Instabilities (TEI).
Recently, by including inertia terms in the formulations of the simple models already studied, the merging of TEI
and DI has shown that, although the coupling of dynamic and thermal terms is generally weak (given the significant
difference in the typical time scales of the two processes), thermal effects are capable of making otherwise neutrally
stable dynamic modes unstable, rendering the new form of instability TEDI (ThermoElastoDynamic Instability)
potentially interesting in a number of applications. Some results involving 1D and 2D models of TEDI are reviewed.

Keywords Dynamic instability · Frictional vibrations · Squeal · Thermo-elastic contact · Thermo-elastic
instability

1 Introduction

Frictional instabilities in the sliding of elastic bodies are complex phenomena resulting from the interaction between
relatively simple physical processes, notably the elastic deformation of contacting bodies, the development of fric-
tional forces at the interface opposing the motion and the consequent generation of frictional heat. These instabilities
are of interest in a wide range of scientific and industrial applications. In the sliding of tectonic plates during earth-
quakes [1,2], Dynamic Instabilities (DI) are believed to have a crucial role in the sliding events. Dynamic Instabilities
are also at play in the sliding of rubber-like materials [3], or in squeal, a typical problem of brake systems. Such
brake noise is a vehicle system problem and the severity, regularity and tone is generally unacceptable for road use.
The contact between the pad and disk during braking creates the raw energy to produce the noise, but the actual
squeal can be primarily a combination of the disk, caliper and pad? A number of methods are available to reduce
the noise factor of a brake system, but the reduction or elimination of noise is usually achieved by a process of trial
and error. Friction instabilities are generally held responsible for squeal. However, there is a large body of literature
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devoted to developing models that explain brake squeal and determine its dependence on the parameters of the
brake system [4,5].

Hoffmann and Gaul [6] recently showed that instability occurs for cases when the system has no static steady
sliding-state solution, which is closely related to a phenomenon first discovered by Painlevé when considering slid-
ing rigid bodies. This is called the “Painlevé paradox” [7,8]. Instability is related to loss of existence, but this is not
always the case. The key factor in friction-excited vibrations has been often considered to be the “rate weakening”,
i.e., the negative slope of the friction–velocity curve [9,10]. This negative friction-curve slope manifests itself in
dynamic systems as a negative viscous-damping term, which has a destabilizing effect. Rabinowicz [10] first put
forward the idea of memory-dependent friction, in which a time lag of friction response is observed. He proposed
that only after sliding a critical distance would friction evolve to its steady-state value at that particular system’s
sliding speed. As a result, the instantaneous slope of the friction curve is actually a multi-valued function which
depends upon the previous sliding history [9,11,12]. Hunt et al. [13] performed experiments on steady sliding of
machine tools and concluded that velocity dependence of friction alone could not account for all observed effects.
Popp [14] reviews some model problems for stick–slip oscillations and chaotic response in dry sliding. He uses
four different friction laws with four different system-dynamic models and reports on the nonlinear response and
bifurcation behavior under various operating conditions. He concluded that even (structurally) linear systems can
demonstrate a nonlinear response due to the nonlinear friction force.

In addition to velocity-dependent friction, the role of normal-tangential coupling in system dynamics has been
examined as a contributor to steady-sliding instability or stick–slip oscillations. The first work in this area was done
by Tolstoi [15], who completed delicate experiments which measured both the in-plane (tangential) motion, as well
as the out-of-plane (normal) motion of a slider against a counter-surface. He noticed tangential slip events were
invariably accompanied by simultaneous upward normal motion; a normal-contact resonance condition could be
observed under which apparent friction was reduced. The argument here is that, in order for friction to change, the
real area of contact must change, and therefore the mean normal separation of the surfaces must also change. A
similar idea to Tolstoi’s was that of Godfrey [16]. He demonstrates an apparent friction reduction due to normal
vibrations: normal vibrations influence the mean surface separation, and therefore the real area of contact. With the
measured frictional shear being a function of real contact area, there is an apparent reduction in friction force with
normal vibration. Also, Sakamoto [17] used a pin-on-disk configuration to examine normal separation effects in
sliding contacts. Friction–velocity loops are observed, and the variation in friction is interpreted as a change in the
real area of contact during sliding (as inferred from contact-resistance measurements).

Another class of instabilities is due to frictional heating. In such cases, thermo-elastic deformation of the con-
tacting bodies modifies the contact pressure distribution and can lead to a rich variety of phenomena including
localization and DI. These effects are of considerable technological importance, including, for example, brakes and
clutches in automotive applications. Such a phenomenon is known as Frictionally excited Thermo-elastic Instabil-
ity (TEI) [18–22]. The most important consequence of TEI is the formation of hot spots at the sliding interface -
hot spots can cause in turn material damage and wear and are also a source of undesirable frictional vibrations,
known in the automotive disk-brake community as “hot roughness” or “hot judder” [23–27]. In this process, any
perturbation in contact pressure causes a corresponding perturbation in heating and hence thermal distortion, which
exaggerates the initial perturbation. It has received more attention in technological applications for which it is of
critical importance, like in the design of brakes and clutches [19,26]. This is due to a coupling between thermal
and mechanical contact boundary conditions, for which the product of friction coefficient and speed (and not just
friction, as in the DI) acts as a gain in the feedback process. Thus, we anticipate that, for a given friction coefficient,
there will be some sliding speed, Vcr, above which the system will be unstable.

Burton et al. [28] used a perturbation method to investigate the stability of contact between two sliding half-planes.
The system is linearized about the uniform pressure state and perturbations are sought that can grow exponentially
in time. Their results provided useful insight into the nature of the phenomenon, but there is no inherent length
scale in the problem as defined and it was found that sufficiently long wavelengths are always unstable. A length
scale can be artificially introduced into the analysis by restricting attention to perturbations below a certain wave-
length, estimated as being comparable with the linear dimensions of the practical system; however, the resulting
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predictions for critical speed do not generally show good agreement with those observed experimentally [29,30].
The first solution of a TEI problem involving a geometric length scale was given by Lee and Barber [31], who
used Burton’s method to analyze the stability of a layer sliding between two half-planes. This geometry provided
a first step towards that of the typical disk-brake assembly, where a disk slides between two pads of a frictional
material. Using typical material properties from automotive applications, it was found that stability is governed by
a deformation mode that is antisymmetric with respect to the mid-plane of the layer and has a wavelength propor-
tional to the layer thickness. Despite the considerable idealizations involved in Lee’s theory, it provides plausible
predictions for the critical speed and the mode shape in typical brake assemblies and is therefore quite widely
used in the brake and clutch industry for TEI analysis. However, this method does not account for other features
of the system geometry, such as the finite width of the sliding surface, the axisymmetric geometry of the disk and
the ‘hat’ section used to attach the disk to its support. One approach is to use the finite-element method to solve the
coupled transient thermo-elastic contact problem in time [25,32,33]. This method is extremely flexible, in that it can
accommodate nonlinear or temperature-dependent constitutive behavior, more realistic friction laws and practical
loading cycles. However, it is also extremely computer-intensive and appears unlikely to be a practical design tool
for three-dimensional problems in the foreseeable future.

Recently, Yi et al. [34] developed a strategy to solve thermo-elastic instability problems using Fourier reduction.
This method was implemented in a finite-element software package (HotSpotter) for evaluating the susceptibility
of axisymmetric multidisk brakes and clutches toTEI by Yi and Barber [35].

So far, TEI and DI were considered separately (TEI is quasi-static and DI includes no thermal effects). In recent
papers, we tried to propose a coupled theory, which we call TEDI (Thermo-Elastic Dynamic Instability).

2 Governing equations

According to the theory of Biot [36] (see also e.g. [37,38]) the governing equations for linear isotropic coupled
thermoelastodynamic problems are:

K∇2θ − ρcE
∂θ

∂t
− α (3λ + 2µ) T0

∂ (∇ · u)

∂t
= 0, (1)

µ∇2u + (λ + µ) ∇ (∇ · u) − α (3λ + 2µ) ∇θ − ρ
∂2u
∂t2 = 0, (2)

σ − µ (∇u + u∇) − λ (∇ · u) I + α (3λ + 2µ) θI = 0, (3)

q + K∇θ = 0, (4)

where (1) is the couple heat equation, (2) is the equation of motion, (3) is the constitutive law and (4) is the heat-
conduction equation. Also, in the above equations, σ is the stress tensor, u is the displacement vector, θ = T − T0 is
the change in temperature, T is the current temperature, T0 is the initial temperature, q is the heat-flux vector, λ and
µ are the Lamè constants, α is the coefficient of linear thermal expansion, ρ is the mass density, cE is the specific
heat at constant deformation, K is the thermal conductivity, I is the identity tensor, ∇ is the gradient operator and
∇2 is the Laplace operator.

We shall review some relevant results of simple (1D and 2D) models for which the above equations can be
simplified.

3 “Frictional” and “frictionless” TEDI in a 1D elastic layer

Afferrante et al. [39] and Afferrante and Ciavarella [40,41] found, for a one-dimensional elastic layer sliding
against a rigid half-space, that the extremely weak coupling between the elastodynamic and thermo-elastic effects
destabilizes the elastodynamic natural vibration modes, causing the system to be unstable at arbitrarily low speeds.
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In particular, the model introduced in [39] and [40] was called “frictionless TEDI”, since frictional traction was
neglected in the analysis for their elastic effects. Also, the elastic layer was considered bonded to the rigid half-space
A in [39], and constrained in [40], respectively.

In [41] it was shown that shear tractions at the interface produce deformations in the form of stick–slip waves
which interact with the jumping mode of the “frictionless TEDI” , reducing it or completely suppressing it and, for
this reason, the authors referred to this as “frictional TEDI”.

Here, we shall report only the main results; for a more complete discussion of the formulation we refer to the
above-cited papers.

Figure 1 shows an elastic layer 0 < x < h which is constrained to a stationary rigid plane A at x = 0. A second
rigid body B moves to the right at velocity V0 and its plane surface makes sliding contact with the layer at x = h.
We also assume that body A is maintained at a temperature θ = 0 and that the sliding body B is a non-conductor,
so that all the heat generated by friction flows through the layer.

For plane strain, the governing equations of the problem sketched in Fig. 1 (neglecting the coupled term in
the heat-conduction equation, because for typical values the effect is negligible as shown in [42]) write (see also
[40,41]):

• heat-conduction equation

∂2θ

∂x2 − 1

k

∂θ

∂t
= 0; (5)

• equations of motion

∂σxx

∂x
− ρ

∂2ux

∂t2 = 0, (6)

∂σxy

∂x
− ρ

∂2uy

∂t2 = 0; (7)

• constitutive law of the material

σxx = 2µ(1 − ν)

1 − 2ν

∂ux

∂x
− 2µ(1 + ν)αθ

1 − 2ν
, (8)

σxy = µ
∂uy

∂x
, (9)

where ux and uy are the longitudinal and shear displacement; σxx and σxy are the normal and shear stress, ν is the
Poisson ratio and k is the thermal diffusivity of the material.

Further, the instantaneous sliding speed V is defined as

V = V0 − ∂uy

∂t
(h, t), (10)

where V0 is the speed of the rigid body B.
To solve the heat-conduction equation (5) we can consider that the end x = 0 of the layer is maintained

at a temperature θ = 0 and at the other end (x = h) the heat generated by friction flows through the layer
(K∂θ/∂x = V σxy).

To solve the equations of motion (6, 7) four cases of boundary conditions can be considered, as summarized in
Table 1:

The stability of the system can be studied by considering the possibility that a small perturbation in the tempera-
ture, stress and displacement fields can grow exponentially in time [28,43]. A complete picture of the characteristic

Table 1 Possible cases of
constraint

Normal force Normal displacement

Tangential force NF–TF ND–TF
Tangential displacement NF–TD ND–TD
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equations is given in [44]. Here we turn our attention to the cases with tangential-displacement constraint because
similar conclusions can be drawn for the other ones.

When the normal force and the tangential displacement are constrained (NF–TD), the characteristic equation
takes the form

f
H

2β3/2

{√
β V̂0 cosh

(
b̃/

√
β
)

− f p̂0 sinh
(

b̃/
√

β
)} sinh

(
b̃
)

−
√

γ b̃ cosh
(

b̃
)

tanh

(√
b̃
γ

)

1 − γ b̃

= cosh
(

b̃
)

cosh
(

b̃/
√

β
)

(11)

where f is the friction coefficient, β = 1−2ν
2(1−ν)

, H = 2µα(1+ν)k
K (1−ν)

, γ = k/ch is an thermoelastodynamic parameter,

c is the dilatational wave speed, V̂0 = V0/c is the dimensionless sliding speed, p̂0 = βp0/µ is the dimensionless
contact pressure and b̃ = γ b = bh/c is the dimensionless growth rate.

If we neglect the effect of frictional tractions on normal displacements (i.e., we use ‘Goodman’s approximation’),
we recover the characteristic equation for the limiting “frictionless” TEDI case

f
H

2γβ
V̂0 = f V̂ = 1

γ

(
1 − γ 2b

)
cosh

(√
b
)

cosh (γ b)

cosh
(√

b
)

sinh (γ b) − γ
√

b sinh
(√

b
)

cosh (γ b)
. (12)

This coincides with the characteristic equation found in [40]. In this case, the pure dynamic roots (which represent
the natural frequencies of undamped vibration of the system in the absence of thermal expansion) are pushed into
the positive half-plane (i.e., acquire positive real part), as a result of the thermal effect.

When the normal and tangential displacements are constrained (NT–TD), the characteristic equation is

f
H

2β3/2

{√
β V̂0 cosh

(
b̃/

√
β
)

− f
2Hγ 
̂

4γβ − f H V̂0
sinh

(
b̃/

√
β
)} cosh

(
b̃
)

− 1 −
√

γ b̃ sinh
(

b̃
)

tanh

(√
b̃
γ

)

1 − γ b̃

= sinh
(

b̃
)

cosh
(

b̃/
√

β
)

(13)

where 
̂ = 
/h is the dimensionless displacement at the end x = h of the layer. In particular, 
 is a small amount
with the undeformed thickness of the layer at temperature T (x) = 0 exceeding h so as to ensure an initial contact
pressure at the interface. The limiting “frictionless” TEDI case can be obtained by neglecting the friction:

f
H

2γβ
V̂0 = f V̂ = 1

γ

(
1 − γ 2b

)
cosh

(√
b
)

sinh (γ b)

cosh
(√

b
)

cosh (γ b) − 1 − γ
√

b sinh
(√

b
)

sinh (γ b)
(14)

coinciding with (2.28) by [39].

3.1 Results

3.1.1 “Frictionless” TEDI

Originally, in [39] we neglected shear waves (i.e., the shear tractions produced at the interface) and, by consid-
ering the coupled problem of thermo-elastic deformation in the dynamic formulation, we discovered a new form
of instability. In particular, when considering displacement control in the normal direction, we have a TEI critical
speed, and the results show a new instability (giving rise in the long run to jumps and impacts at the interface), that
is, predicted by an exponential growth rate in Fig. 2, which is plotted against the sliding speed for the first mode
(n = 1), this being the dominant one. The instability originates at any speed and surprisingly is also present for
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Fig. 1 An elastic layer bounded to a rigid body at x = 0 and
sliding against a rigid plane surface at x = h
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Fig. 2 Frictionless TEDI growth factors for displacement con-
trol (from [39])

systems having very different characteristic times of the thermal and dynamic phenomena. In Fig. 2, we plot with
a dashed–dot line the real part Re (b) of the complex growth rates, i.e., growth rates with non-zero imaginary part
(b = Re (b) + iIm (b)), whereas with a solid line the growth rates with Im (b) = 0 (b = Re (b)) are denoted.
Notice that the real zero passes into the complex plane at the value V̂ = 2, exactly as in the limiting case γ = 0. This
is to be expected, since a real zero with Re(b) = 0 involves no variation of the stress or temperature perturbations
in time and hence the acceleration terms in the governing equations make no contribution. Thus, the elastodynamic
properties of the system have no effect on the stability boundary, if this is determined by a real zero.

If we control the normal force, we find similar instabilities, but the pure TEI modes disappear (in Fig. 3 we have
only complex growth factors), since in the normal direction, a quasi-static solution (like done in TEI) predicts a
trivial solution which we cannot perturb in terms of pressure by definition.

Hence, arbitrarily small amounts of thermoelastodynamic coupling are sufficient to cause undamped oscillatory
states to grow in time. The problem remains linear as long as contact is maintained at the sliding end of the rod, so
we must conclude that these perturbations will continue to grow exponentially until they are of sufficient amplitude
to cause periods of separation.

When the layer is bonded to the half-space A(u (h, t) = −
), the results are qualitatively different depending
on whether V̂ is greater or less than the TEI critical speed V̂cr = 2. In fact, for V̂ > V̂cr we expect that the system
tends to a state of thermo-elastic seizure. However, more interesting from an engineering perspective is the range
0 < V̂ < 2 in which the quasi-static solution predicts a monotonic transition to the steady state, but the elastodynamic
solution predicts unstable growing oscillations. The transient results show an initial trend similar to the quasi-static
prediction with a superposed oscillation whose amplitude grows in time. Eventually, the contact pressure falls to
zero and the system undergoes alternating periods of contact and separation tending asymptotically to a limit cycle
as shown in Fig. 4.

Notice the period between successive impacts (t̂0 = 2γ ) is independent of V̂ because it represents the time taken
for a pressure wave to propagate across the layer and be reflected back to the interface. Similar results can be
obtained for other speeds in the range V̂ < 2, where the quasi-static solution is stable.

By increasing the sliding speed, the maximum contact pressure pmax during the contact phase increases, but
the contact period tc decreases, so the average contact pressure will increase more slowly than the maximum one.
Figure 5 shows the variation of the average contact pressure with the sliding speed (the steady-state contact pressure
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Fig. 3 Frictionless TEDI growth factors for force control (from
[40])
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Fig. 4 The limit cycle for p̂ for V̂ = 1, γ = 10−1 when the
layer is bonded to half-space A (from [39])
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Fig. 5 Effect of dimensionless sliding speed V̂ for γ = 10−1

on the contact pressure p̂ave averaged over the period t̂0 when
the layer is bonded to half-space A (from [39])
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Fig. 6 Limit cycle for the contact pressure p̂ when the layer is
constrained to half-space A (γ = 10−1 and V̂ = 0.1, 0.2, 0.4,
from [40])

predicted by the quasi-static analysis is also shown for comparison). The two curves are quite close until we approach
the quasi-static critical speed, implying that the limit cycle represents a nonlinear oscillation about the quasi-static
solution.

In Fig. 6 the limit cycle for the contact pressure p̂ is shown for the case in which we have a normal force
(σ (0, t) = −p0) prescribed at the end x = 0 of the layer. It would seem that the main effect, even in the limit
of near-zero speed, is to produce a limit cycle with about 1/2 of the period in separation, and 1/2 under contact.
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Fig. 7 Variation of p̂max with the speed V̂ when the layer is
constrained to half-space A (γ = 10−1, from [40])
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Fig. 8 Variation of the exponential growth rate Re(b̃) with the
wave number for dilatational modes, different γ , ν = 0.3, H =
1, f = 0.1, V̂0 = 10−3, p̂0 = 10−3 (NF–TD) (from [41])

As secondary effect, a localized maximum appears, and the period of the steady-state oscillation slightly increases
with speed, with the contact phase one reducing and the maximum pressure growing sensibly.

In this case the average contact pressure in the period between successive impacts cannot change because it is
imposed (pave = p0). This is interesting, as the maximum contact pressure p̂max grows with the speed (Fig. 7). As
expected, p̂max monotonically increases more than linearly with V̂ .

3.1.2 “Frictional” TEDI

Moving to the case in which frictional tractions are included, shear modes will interact with the jumping modes of
the “frictionless TEDI”.

In this section results of the linear perturbation analysis are presented for the NF–TD case. No significantly
different result is obtained in the other cases of constraint.

In the purely dynamic case the only natural modes of vibration exist. When thermal effects are considered, the
natural modes of vibration will be differently excited and for each possible frequencies we will have a different
growth rate corresponding to an excited mode.

Figures 8 and 9 show the variation of the exponential growth rate Re(b̃) with the wave number for different γ

and the first 30 dilatational and shear modes, respectively.
Reducing γ leads to dilatational growth rates moving upward and at small γ all modes show similar growth

factors. Notice that relatively large values of growth rate are here associated with beating modes (for example
dilatational mode m = 3 with shear mode n = 6, m = 11 with n = 21, and so on).

Figure 10 shows, in terms of p̂0 and V̂0, the zone in which shear effects dominate over dilatational ones (“shear”
zone) and vice versa (“dilatational” zone). The solid line divides the “shear” zone from the “dilatational” one,
whereas a dashed line allows to define where we can use the frictionless approximation. Shear effects can be sig-
nificant at low pressures provided that the speed is sufficiently small. This figure is made by considering only the
modes for which Re(b̃) is maximum (we considered the first 100 modes). The distinction between “shear” and
“dilatational” zone will not be so clear. In fact, we expect the existence of a zone where shear and dilatational modes
are competitive.
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Fig. 9 Variation of the exponential growth rate Re(b̃) with the
wave number for shear modes, different γ , ν = 0.3, H = 1,
f = 0.1, V̂0 = 10−3, p̂0 = 10−3 (NF–TD) (from [41])
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Fig. 10 Relation between p̂0 and V̂0 for which the shear maxi-
mum growth rate Re(b̃)max is larger than the dilatational one and
vice versa (from [41])

Anyway, we can notice that shear-growth factors dominate the system behavior at low sliding speed, whereas
dilatational ones dominate when higher speeds are considered. Also, shear-traction elastic waves significantly
modify dilatational modes only at very high pressures. In fact, small differences with the growth rate of the first
“frictionless TEDI” mode can be found in practical ranges of the contact pressure.

In the other cases (NF–TF, ND–TD and ND–TF) similar conclusions can be derived. However, when the normal
displacement is constrained (ND–TD and ND–TF cases), additional eigenvalues with Im (b) = 0 (i.e., pure real)
are found above a certain critical speed corresponding to the TEI modes. Naturally, above the TEI critical speed,
the only possible steady state is with negative imposed displacement (otherwise there is seizure, i.e., an infinite
increase of the pressure). TEI modes (real eigenvalues) dominate over TEDI ones at higher speed, whereas at low
speed TEDI shear modes will characterize the system behavior.

The above results allow us to summarize the possible behaviors of the system:

• at very large pressure p̂0 shear modes dominate over dilatational ones, and the steady state will probably be
governed by alternating periods of stick and slip;

• reducing the pressure to a condition in which shear and dilatational modes are competitive, separation phases
will probably overlap with the periods of stick and slip;

• at low pressures dilatational modes are dominant. In such cases, the steady state will probably be characterized
by alternating phases of contact and separation.

Figures 11 and 12, where the limit cycles of the speed V̂
(
t̂
)

and contact pressure p̂ (t) are, respectively, plotted

for V̂0 = 10−1 and p̂0 = 10 (here, the dimensionless factor 10 is somehow unrealistically large but shown only for
representative purposes, since at smaller speeds similar results can be obtained), show the steady state is charac-
terized by alternating periods of stick and slip. With a red line we plot the frictionless solution, i.e., the solution
obtained by neglecting shear tractions elastic waves. The frictionless limit cycle for the pressure is very different,
being constituted by alternating periods of contact and separation.

Figure 13 shows the fully established limit cycle of the dimensionless contact pressure p̂(t̂) for V̂0 = 10−1 and
p̂0 = 1. It is composed of four alternating periods of stick, slip, separation and slip again. During the stick phase we
have a pick of pressure and the instantaneous speed V̂ is zero. Obviously, the period between successive impacts
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Fig. 11 The limit cycle of V̂ for ν = 0.3, H = 1, γ = 10−1,

V̂0 = 10−1, V̂0/ p̂0 = 10−2 and f = 0.1
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Fig. 12 The limit cycle of p̂ for ν = 0.3, H = 1, γ = 10−1,

V̂0 = 10−1, V̂0/ p̂0 = 10−2 and f = 0.1
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Fig. 13 The limit cycle of p̂ for ν = 0.3, H = 1, γ = 10−1,

V̂0 = 10−1, V̂0/ p̂0 = 10−1 and f = 0.1 (from [41])
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Fig. 14 The limit cycle for p̂ for ν = 0.3, H = 1, γ = 10−1,

V̂0 = 10−1, V̂0/ p̂0 = 1 and f = 0.1 (from [41])

is independent of V̂0 and given by t̂0 = 4γ . Now the frictionless limit cycle for the pressure (red dot line) is very
close to the frictional one. Only a very small difference in the peak of the pressure can be noticed.

Reducing the pressure p̂0, i.e., thus increasing the ratio V̂0/ p̂0, the dilatational modes will dominate the transient
response of the system and the limit cycle will be similar to the frictionless case (red online version only dot line)
with alternating periods of separation and sliding contact. This is confirmed in Fig. 14 where the limit cycle of p̂ (t)
is plotted for V̂0 = p̂0 = 10−1.
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4 Frictional TEDI: 2D problems

In this section we aim to discuss the coupled case for two-dimensional geometries. First we consider the case of two
conducting and elastic sliding half-spaces studied in [45, Fig. 15]. Later we will discuss the case of a conducting
elastic layer sliding between two layers which are also elastic and conducting studied in [46, Fig. 20].

4.1 Two elastic half-spaces

This is the equivalent of Adams’ paper [47] of DI, with frictional heating added, or the equivalent of the paper
by Burton et al. [28] regarding TEI, with inertia terms added. In the case without frictional heating [47], dynamic
instability can only occur for different materials (for identical materials we have two Rayleigh waves of equal
amplitude and equal wavelength but with 180 degree phase difference propagating in the same direction without
interaction). When smooth-contact Stoneley waves exist for unbounded frictionless contacts without separation
(i.e., when the shear-wave speeds of the contacting materials do not differ greatly) [48], instability occurs as f
is increased from zero. For the other cases in which smooth-contact Stoneley waves do not exist (i.e., when the
materials have significantly different shear-wave speeds), analogous waves appear at finite values of the friction
coefficient. For the TEI, the critical speed is well defined and depends on the wavelength.

The governing equations for the problem under investigation (for plane-strain conditions) we write (see [45])

∂2θ

∂x2 + ∂2θ

∂y2 − 1

k

∂θ

∂t
= 0, (15)

(λ + 2µ)
∂2ux

∂x2 + µ
∂2ux

∂y2 + (λ + µ)
∂2uy

∂x∂y
− m

∂θ

∂x
− ρ

∂2ux

∂t2 = 0, (16)

(λ + µ)
∂2ux

∂x∂y
+ µ

∂2uy

∂x2 + (λ + 2µ)
∂2uy

∂y2 − m
∂θ

∂y
− ρ

∂2uy

∂t2 = 0, (17)

where m = (3λ + 2µ)α.
One of two half-planes can be regarded as stationary and the other as moving at speed V0. The perturbation moves

at a speed v1 over the stationary body and hence at a speed v2 over the moving body in a material frame of reference
such that |v1 − v2| = V0. There will be four mechanical boundary conditions on the friction surfaces. These entail
continuity of the two tractions, continuity of normal displacement (full contact) and the Coulomb friction law:

uy1

∣∣
y=0 − uy2

∣∣
y=0 = 0, (18)

σxy1

∣∣
y=0 − σxy2

∣∣
y=0 = 0, (19)

σyy1

∣∣
y=0 − σyy2

∣∣
y=0 = 0, (20)

σxy1

∣∣
y=0 − f σyy1

∣∣
y=0 = 0. (21)

Also, there are two thermal boundary conditions which are continuity of temperature and the frictional-heating
balance (for half-plane 1 the heat flow is positive if exiting the body, for half-plane 2 it is positive if entering the
body):

θ1|y=0 − θ2|y=0 = 0, (22)

q2 − q1 − f V p = 0, (23)

where V is the instantaneous sliding speed defined as

V = V0 −
(

∂ux1

∂t
− ∂ux2

∂t

)
. (24)

In a way similar to that described in the previous section, the stability of the system can be studied by considering
the possibility that a small perturbation in the temperature, stress and displacement fields can grow exponentially
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Fig. 15 Two elastic and conducting half-planes in sliding con-
tact against each other (from [44])
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Fig. 16 Modification of DI stability boundaries with thermo-
elastic effects (from [44])

in time. In the sequel we show that the instability boundary for DI and TEI modifies when thermo-elastic effects
are added.

Figure 16 shows the modification of the DI critical friction coefficient when thermo-elastic effects are included
(the parameter χ is defined as the ratio between the shear-wave speeds of the materials). The maps are obtained
for V̂0 = V0/cs1 = 10−1 (cs1 is the shear-wave velocity in the material 1), and different p̂0 = p0/µ1. A relatively
weak coupling between thermal and dynamic effects exists. The boundary instability limits are plotted as solid
and dashed lines for the waves traveling at the shear (cs1) and dilatational (cd1) waves speed, respectively. With a
dashed–dot line we plot the stability boundary for the waves traveling at the Rayleigh wave speed (cG R1). Notice
the unstable interfacial waves that travel at speed cd1 move in the opposite direction.

In the range where smooth-contact Stoneley waves do not exist (large mismatch between the shear-wave speeds
of the materials, i.e., small values of χ ), the effect of thermal expansion can be explored through the variation of
the critical coefficient for instability. Figure 17 shows the modification of the DI critical-friction coefficient with
thermo-elastic effects in this case. Where the smooth-contact Stoneley waves exist and the critical friction coefficient
is zero, the only comparison which can be done must be the effect on the growth rate for a given f or V0. Therefore,
Fig. 18 shows that the dimensionless growth rate b̃ = bk1/c2

s1
changes with the friction coefficient f . In this case

smooth-contact Stoneley waves exist and they are the only unstable waves for small friction coefficient. In fact,
a TEI disturbance has positive growth rates only when f � 0.19 and the waves which propagate at a speed very
close to, but slightly lower than cd1 in the negative x-direction are unstable for f � 0.3. Notice that the exponential
growth rate of these unstable waves reduces with the pressure p̂0.

Figure 19 shows the effect of the inertia terms in the TEI maps. Significant deviations are noticed when V̂0

approaches unity and larger wave numbers are considered. Notice, however, that, surprisingly, inertia terms tend to
decrease the instability range.

4.2 An elastic and conducting layer sliding between two elastic and conducting layers

Figure 20 shows the geometry of the problem under investigation.
By applying symmetric or antisymmetric boundary conditions, the problem can be reduced to a two-layer model

in which a half-layer is sliding against another layer. Yi [46] developed a finite-element procedure to solve the
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Fig. 17 Modification of DI critical friction coefficient with
thermo-elastic effects (from [44])
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Fig. 20 An elastic and conducting layer sliding between two
elastic and conducting layers

problem involving thermo-elastodynamic instability. Notice the system investigated by Yi [46] falls in the category
of “frictionless” TEDI models.

Figures 21 and 22 (corresponding to Figs. 4 and 5 of Yi’s paper) show the growth rate as a function of sliding
speed for the wave number for which the system has the lowest critical TEI speed and under antisymmetric and
symmetric boundary conditions. Notice, as the real part of b is always positive, that this is also true at arbitrarily
small speed. In the phase in which we have only TEDI instability, Re (b) is very small (of the order of 10−5) and
remains approximately constant with the speed; in the second phase, the growth rate increases with the sliding
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Fig. 21 Variation of the growth rate with the sliding speed for
antisymmetric b.c. (from [46])

Fig. 22 Variation of the growth rate with the sliding speed for
symmetric b.c. (from [46])

speed and we do not discern TEDI and TEI results. The transition point of the two phases in TEDI corresponds to
the critical sliding speed in TEI.

Investigation of the imaginary part of the growth rate reveals that the leading modes of TEDI vibrate at very high
frequencies (comparable with the frequencies of DI). This means that the leading modes are induced by dynamic
effects, with small but non-negligible growth rates. When the sliding speed exceeds the critical TEI speed, the
imaginary parts of the leading modes are comparable with those of TEI modes.

Hence, at low sliding speeds we have some coupling between dynamic and thermo-elastic effects, but at high
sliding speeds this coupling is negligible and thermo-elastic effects dominate.

5 Conclusions

Frictional instabilities in the sliding of elastic bodies are of interest in a wide range of scientific and industrial
applications. For example, many of the aspects of earthquake phenomena can apparently be explained by fric-
tional stability regimes; frictional instabilities are generally held responsible for squeal; the formation of hot spots
is a consequence of frictionally excited thermo-elastic instability (TEI); frictional-instability phenomena cause
Schallamach waves; stick–slip instabilities are also studied in the Atomic Friction Microscope.

In particular, both frictional dynamic (DI) and thermo-elastic (TEI) instabilities can be analyzed using linear
perturbation methods, leading to a characteristic equation for the exponential growth rate of an initial perturbation.
Thermo-elastic deformations are neglected in the analysis of frictional instabilities and a quasi-static approximation
is used in the analysis of TEI. Some justification for this ‘decoupling’ of the two phenomena is provided by the
widely divergent time scales involved. Thermo-elastic instabilities occur on the rather slow time scale of thermal
diffusion, whereas elastodynamic processes are governed by the elastic wave speeds in the materials.

Therefore, we were motivated to develop an analysis of the coupled problem including both elastodynamic
and thermo-elastic effects in the same perturbation analysis. The resulting studies, however, found results which
are more interesting than what we expected to find in our original motivation, namely, we found a new family of
instabilities, named TEDI.

This investigation was initiated by considering a one-dimensional elastic layer bonded to a rigid half-space and
sliding against a second rigid half-space and a 2D problem of half-planes and layers in sliding contact.
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For the simple 1D model, with constant coefficient of friction, the model without coupling shows a trivial
response: no dynamic instability, whereas a frictional-heating (TEI) instability is obtained only for high speeds and
due to displacement constraint of the model (in the case of force control, no TEI instability would be present). The
coupled model leads to instability at all speeds, and at small speeds the nonlinear limit cycle obtained is clearly
an oscillation closer to the quasi-static approximation, but with a “jumping” mode of impacts possibly responsible
for noise and vibrations. These instabilities were called “frictionless TEDI” since they emerge already when we
neglect the effect of shear deformations (i.e., shear-wave propagation).

An improvement of the model by including shear-traction elastic waves at the interface permits to include the
possibility of stick–slip deformations. In this case, shear waves interact with dilatational waves and hence the result-
ing behavior is more complicated: the “frictionless TEDI” modes are reduced or completely suppressed. For this
reason, we called these new modes “frictional TEDI” modes.

In particular, starting from very high ratios between the sliding speed V0 and applied pressure p0, dilatational
modes dominate over shear modes and the steady state is characterized by alternating phases of sliding contact and
separation (similarly to the “frictionless TEDI” case). Reducing the sliding speed (or increasing the pressure p0)
to a condition in which shear and dilatational modes are competitive, separation phases overlap with the periods of
stick and slip. At low ratios V0/p0 shear modes dominate over dilatational ones, and the steady state is governed
by alternating periods of stick and slip.

Notice in the limit of small pressures or high speeds, the “frictionless TEDI” case is recovered. Hence, “friction-
less TEDI” correctly describes the system behavior when the ratio V0/p0 is sufficiently high.

For 2D models the full study shows a relatively weak effect of the thermal deformations. In fact, for two in-plane
sliding half-spaces only with high sliding speeds (comparable to the wave speeds in the material) does some sig-
nificant variation of the growth factor emerge. However, in a layered 2D geometry the coupling is again significant
at low sliding speeds (the real part of the growth rate b is always positive also at arbitrarily small speed).

Limiting the attention to the present models of TEDI, there are a number of interesting effects which it may be
important to include in the future. The most important is probably damping, both internal and structural. Damping
would possibly be significant to reduce TEDI, or completely suppress it. Some preliminary judgment on which class
of instability would be affected by damping would be important, particularly as there are many forms of damping.
Probably some experimental evidence would be needed, to avoid generating an endless number of complicated
purely mathematical formulations. Another form of damping might be that due to more complex forms of friction
laws, but it will be sensible to limit such a study to the forms of TEDI where it is known that a friction law related to
the classical Coulomb law can lead to significantly different results. For example, only the ill-posed TEDI solution
can be significantly affected by a rate-state-dependent friction law, since these are generally used exactly within
the scope of regularizing ill-posed DI solutions.
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